Soft glassy rheology of supercooled molecular liquids.

نویسندگان

  • Rob Zondervan
  • Ted Xia
  • Harmen van der Meer
  • Cornelis Storm
  • Florian Kulzer
  • Wim van Saarloos
  • Michel Orrit
چکیده

We probe the mechanical response of two supercooled liquids, glycerol and ortho-terphenyl, by conducting rheological experiments at very weak stresses. We find a complex fluid behavior suggesting the gradual emergence of an extended, delicate solid-like network in both materials in the supercooled state-i.e., above the glass transition. This network stiffens as it ages, and very early in this process it already extends over macroscopic distances, conferring all well known features of soft glassy rheology (yield-stress, shear thinning, aging) to the supercooled liquids. Such viscoelastic behavior of supercooled molecular glass formers is difficult to observe because the large stresses in conventional rheology can easily shear-melt the solid-like structure. The work presented here, combined with evidence for long-lived heterogeneity from previous single-molecule studies [Zondervan R, Kulzer F, Berkhout GCG, Orrit M (2007) Local viscosity of supercooled glycerol near T(g) probed by rotational diffusion of ensembles and single dye molecules. Proc Natl Acad Sci USA 104:12628-12633], has a profound impact on the understanding of the glass transition because it casts doubt on the widely accepted assumption of the preservation of ergodicity in the supercooled state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The rheology of solid glass

As the glass transition is approached from the high temperature side, viewed as a liquid, the properties of the ever more viscous supercooled liquid are continuous functions of temperature and pressure. The point at which we decide to classify the fluid as a solid is therefore subjective. This subjective decision does, however, have discontinuous consequences for how we determine the rheologica...

متن کامل

Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids.

The primary and secondary relaxation timescales of aging colloidal suspensions of Laponite are estimated from intensity autocorrelation functions obtained in dynamic light scattering (DLS) experiments. The dynamical slowing down of these relaxation processes are compared with observations in fragile supercooled liquids by establishing a one-to-one mapping between the waiting time since filtrati...

متن کامل

Dynamics of Highly Supercooled Liquids far

We rst review our recent simulation work on dynamic heterogeneity and supercooled liquid rheology. We then treat a supercooled polymer melt to study the stress relaxation function, transient stress evolution, shear-thinning, and elongation of chains.

متن کامل

A many-body stochastic approach to rotational motions in liquids: complex decay times in highly viscous fluids *

Reorientational relaxation in complex liquids is still lacking a unified treatment that is capable of dealing with the relevant stochastic processes without excessive complications. A significant challenge is offered by the study of highly viscous, glassy and supercooled liquids. Rotational relaxation of flexible short chain and small rigid molecules in supercooled organic liquids have been stu...

متن کامل

Glass formation and thermodynamics of supercooled monatomic liquids.

Atomic mechanism of glass formation of a supercooled simple monatomic liquid with Lennard-Jones-Gauss (LJG) interatomic potential is studied by molecular dynamics (MD) simulation. Supercooled and glassy states are obtained by cooling from the melt. Glassy state obtained at low temperatures is annealed for very long time, on the order of microsecond, and we find that glassy state remains unchang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 13  شماره 

صفحات  -

تاریخ انتشار 2008